Multi-instance Multi-label Learning for Relation Extraction

نویسندگان

  • Mihai Surdeanu
  • Julie Tibshirani
  • Ramesh Nallapati
  • Christopher D. Manning
چکیده

Distant supervision for relation extraction (RE) – gathering training data by aligning a database of facts with text – is an efficient approach to scale RE to thousands of different relations. However, this introduces a challenging learning scenario where the relation expressed by a pair of entities found in a sentence is unknown. For example, a sentence containing Balzac and France may express BornIn or Died, an unknown relation, or no relation at all. Because of this, traditional supervised learning, which assumes that each example is explicitly mapped to a label, is not appropriate. We propose a novel approach to multi-instance multi-label learning for RE, which jointly models all the instances of a pair of entities in text and all their labels using a graphical model with latent variables. Our model performs competitively on two difficult domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Adversarial Training for Relation Extraction

Adversarial training is a mean of regularizing classification algorithms by generating adversarial noise to the training data. We apply adversarial training in relation extraction within the multi-instance multi-label learning framework. We evaluate various neural network architectures on two different datasets. Experimental results demonstrate that adversarial training is generally effective f...

متن کامل

MSRA-USTC-SJTU at TRECVID 2007: High-Level Feature Extraction and Search

This paper describes the MSRA-USTC-SJTU experiments for TRECVID 2007. We performed the experiments in high-level feature extraction and automatic search tasks. For high-level feature extraction, we investigated the benefit of unlabeled data by semi-supervised learning, and the multi-layer (ML) multi-instance (MI) relation embedded in video by MLMI kernel, as well as the correlations between con...

متن کامل

Deep Learning Approaches to the Multi-Instance Multi-Label (MIML) Learning Problem

Multi-instance Multi-label learning (MIML) problem is that, given a bag of instances and a set of labels, the task is to assign labels to the bag, which are relevant to the bag as a whole. The problem of MIML finds its relevance in relation extraction, vision, machine learning and information extraction. In this piece of work, our aim is to develop a scalable deep learning approach towards the ...

متن کامل

Relation Extraction with Multi-instance Multi-label Convolutional Neural Networks

Distant supervision is an efficient approach that automatically generates labeled data for relation extraction (RE). Traditional distantly supervised RE systems rely heavily on handcrafted features, and hence suffer from error propagation. Recently, a neural network architecture has been proposed to automatically extract features for relation classification. However, this approach follows the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012